Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Phys Chem B ; 126(2): 513-527, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35001628

RESUMO

Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects.

3.
Langmuir ; 36(24): 6736-6748, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32453595

RESUMO

The spin-spray-assisted layer-by-layer (LbL) assembly technique was used to prepare coordinative oxidative multilayers from Ce(IV), inorganic polyphosphate (PP), and graphene oxide (GO). The films consist of successive tetralayers and have a general structure (PP/Ce/GO/Ce)n. Such oxidative multilayers have been shown to be a general platform for the electrodeless generation of conducting polymer and melanin-type films. Although the incorporation of GO enhances the film growth, the conventional dip LbL method is very time consuming. We show that the spin-spray method reduces the time required to grow thick multilayers by the order of magnitude and the film growth is linear from the beginning, which implies a stratified structure. We have deposited poly(3,4-ethylenedioxothiophene), PEDOT, on the oxidative multilayers and studied these redox-active films as models for melanin-type capacitive layers for supercapacitors to be used in biodegradable electronics, both before and after the electrochemical reduction of GO to rGO. The amount of oxidant and PEDOT scales linearly with the film thickness, and the charge transfer kinetics is not mass transfer-limited, especially after the reduction of GO. The areal capacitance of the films grows linearly with the film thickness, reaching a value of ca. 1.6 mF cm-2 with 20 tetralayers, and the specific volumetric (per film volume) and mass (per mass of PEDOT) capacitances are ca. 130 F cm-3 and 65 F g-1, respectively. 5,6-Dihydroxyindole can also be polymerized to a redox-active melanin-type film on these oxidative multilayers, with even higher areal capacitance values.

4.
J Phys Chem B ; 123(11): 2513-2524, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30813731

RESUMO

Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanoparticles formed by autoxidation and aerobic or anaerobic oxidation in the presence of Ce(IV), Fe(III), Cu(II), and Mn(VII). The UV-vis spectra of the purified nanoparticles are similar, and dopaminechrome is an early intermediate species. At low pH, Cu(II) requires the presence of oxygen and chloride ions to produce polydopamine at a reasonable rate. The changes in dispersibility and surface charge take place at around pH 4, which indicates the presence of ionizable groups, especially carboxylic acids, on their surface. X-ray photoelectron spectroscopy shows the presence of three different classes of carbons, and the carbonyl/carboxylate carbons amount to 5-15 atom %. The N 1s spectra show the presence of protonated free amino groups, suggesting that these groups may interact with the π-electrons of the intact aromatic dihydroxyindole moieties, especially in the metal-induced samples. The autoxidized and Mn(VII)-induced samples do not contain metals, but the metal content is 1-2 atom % in samples prepared with Ce(IV) or Cu(II), and ca. 20 atom % in polydopamine prepared in the presence of Fe(III). These differences in the metal content can be explained by the oxidation and complexation properties of the metals using the general model developed. In addition, the nitrogen content is lower in the metal-induced samples. All of the metal oxidants studied can be used to rapidly prepare polydopamine at room temperature, but the possible influence of the metal content and nitrogen loss should be taken into account.

5.
Langmuir ; 34(44): 13171-13182, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30278139

RESUMO

Layer-by-layer (LbL) fabricated oxidative multilayers consisting of successive layers of inorganic polyphosphate (PP) and Ce(IV) can electrolessly form thin conducting polymer films on their surface. We describe the effect of substituting every second PP layer in the (PP/Ce) multilayers for graphene oxide (GO) as a means of modifying the structure and mechanical properties of these (GO/Ce/PP/Ce) films and enhancing their growth. Both types of LbL films are based on reversible coordinative bonding between the metal ions and the oxygen-bearing groups in PP and GO, instead of purely electrostatic interactions. The GO incorporation leads to the doubling of the areal mass density and to a dry film thickness close to 300 nm after 4 (GO/Ce/PP/Ce) tetralayers. The film roughness increases significantly with thickness. The (PP/Ce) films are soft materials with approximately equal shear storage and loss moduli, but the incorporation of GO doubles the storage modulus. PP displays a marked terminating layer effect and practically eliminates mechanical losses, making the (GO/Ce/PP/Ce) films almost pure soft elastomers. The smoothness of the (PP/Ce) films and the PP-termination effects are attributed to the reversible coordinative bonding. The (GO/Ce/PP/Ce) films oxidize pyrrole and 3,4-ethylenedioxythiophene (EDOT) and form polypyrrole and PEDOT films on their surfaces. These polymer films are considerably thicker than those formed using the (PP/Ce) multilayers with the same nominal amount of cerium layers. The GO sheets interfere with the polymerization reaction and make its kinetics biphasic. The (GO/Ce) multilayers without PP are brittle and thin.

6.
J Phys Chem B ; 122(24): 6314-6327, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29787272

RESUMO

We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV-vis and electrochemical studies. The model is applicable to other catecholamines and various experimental conditions. The results show that the decisive physicochemical parameters in autoxidation are the p K values of the semiquinone and the amino group in the oxidized quinone. Addition of Ce(IV) or Fe(III) enhances dopamine oxidation in acidic media in aerobic and anaerobic conditions by the direct oxidation of dopamine and, in the presence of oxygen, also by the autoxidation of the formed semiquinone. At pH 4.5, the enhancement of the one-electron oxidation of dopamine explains the overall reaction enhancement, but at a lower pH, cyclization becomes rate-determining. Oxidation by Cu(II) at reasonable rates requires the presence of oxygen or chloride ions.

7.
Langmuir ; 32(16): 4103-12, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27049932

RESUMO

The preparation of thin melanin films suitable for applications is challenging. In this work, we present a new alternative approach to thin melanin-type films using oxidative multilayers prepared by the sequential layer-by-layer deposition of cerium(IV) and inorganic polyphosphate. The interfacial reaction between cerium(IV) in the multilayer and 5,6-dihydroxyindole (DHI) in the adjacent aqueous solution leads to the formation of a thin uniform film. The oxidation of DHI by cerium(IV) proceeds via known melanin intermediates. We have characterized the formed DHI-melanin films using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), UV-vis spectroscopy, and spectroelectrochemistry. When a five-bilayer oxidative multilayer is used, the film is uniform with a thickness of ca. 10 nm. Its chemical composition, as determined using XPS, is typical for melanin. It is also redox active, and its oxidation occurs in two steps, which can be assigned to semiquinone and quinone formation within the indole structural motif. Oxidative multilayers can also oxidize dopamine, but the reaction stops at the dopamine quinone stage because of the limited amount of the multilayer-based oxidizing agent. However, dopamine oxidation by Ce(IV) was studied also in solution by UV-vis spectroscopy and mass spectrometry in order to verify the reaction mechanism and the final product. In solution, the oxidation of dopamine by cerium shows that the indole ring formation takes place already at low pH and that the mass spectrum of the final product is practically identical with that of commercial melanin. Therefore, layer-by-layer formed oxidative multilayers can be used to deposit functional melanin-type thin films on arbitrary substrates by a surface-controlled reaction.

8.
ACS Appl Mater Interfaces ; 6(4): 2325-34, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24456025

RESUMO

Fabrication of precisely tailored layers of conductive polymers in thin film assemblies is an attractive extension of the layer-by-layer technique. This approach provides tools for fabricating thin films with customized optical and electrical properties. In this paper, we study inorganic layer-by-layer assembled films prepared using polyphosphate and cerium(IV). It is shown that these multilayers can oxidize certain monomers from the adjacent aqueous solution to produce conducting polymer layers. We studied the thermodynamic factors that allow the aforementioned autopolymerization. A five bilayer polyphosphate/cerium(IV) film was shown to possess high oxidative power in acidic solutions. It was found that the polymerization of pyrrole, aniline and 3,4-ethylenedioxythiophene in contact with the redox active multilayer is thermodynamically favored. The rate of polymer formation and the thickness of the conducting film could be controlled by the concentration of the monomer in solution and the number of cerium/polyphosphate bilayers in the oxidative film. The oxidative polymerization of pyrrole was unambiguously recognized on UV-vis spectra with characteristic reduction and oxidation bands. The film formation was not restricted by charge diffusion and the reaction formally followed first-order kinetics. The results suggest that the reaction takes place effectively within the whole pre-existing polypyrrole film and it continues until all oxidant in the film was used. The spectral changes that are characteristic for conducting polypyrrole are shown on spectroelectrochemical analysis of the films indicating that cationic (polaron) and dicationic (bipolaron) species are involved in the redox processes of the film. The functional polymer films formed are found to be electroactive and conducting. Therefore, they fully resemble of conducting polymer films prepared using traditional electropolymerization.

9.
Anal Bioanal Chem ; 405(11): 3611-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23462978

RESUMO

The fabrication concept for a low-cost sensor device using reduced graphene oxide (rGO) as the sensing material on a porous paper substrate is presented. The sensors were characterized using conductivity and capacitance measurements, atomic force microscopy and X-ray photoelectron spectroscopy. The effects of different reducing agents, graphene oxide (GO) flake size and film thickness were studied. The sensor was sensitive to NO2, and devices based on a thin (10-nm) hydrazine-reduced GO layer had the best sensitivity, reaching a 70% reduction in resistance after 10 min of exposure to 10 ppm NO2. The sensitivity was high enough for the detection of sub-parts per million levels of NO2. Desorption of gas molecules, i.e. the recovery of the sensor, could be accelerated by UV irradiation. The structure and preparation of the sensor are simple and up-scalable, allowing their fabrication in bulk quantities, and the fabrication concept can be applied to other materials, too.

10.
Anal Bioanal Chem ; 405(11): 3579-86, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23283286

RESUMO

A gold electrode partially coated by graphene multilayer is developed and tested with respect to high concentrations of hydrogen peroxide. The effective use of conventional electrode materials for the determination of such an analyte by anodic oxidation or cathodic reduction is prevented by the occurrence of adsorptions fouling the electrode surface. This prevents reliable and repeatable voltammetric curves for being recorded and serious problems arise in quantitative analysis via amperometry. The gold-graphene electrode is shown to be effective in quantitative evaluation, by cathodic reduction, of hydrogen peroxide at concentration levels that are of interest in an industrial. Acid, neutral, and basic pH values have been tested through correct adjustment of a Britton Robinson buffer. The experiments have been performed both by cyclic voltammetry and with amperometry at constant potential in unstirred solution. The latter technique has been employed in drawing a calibration linear plot. In particular, the performances of the developed electrode system have been compared with those of both pure gold and pure graphene electrode materials. The bi-component electrode was more sensitive; co-catalytic action by the combination of the two components is hypothesised. The system is stable over many potential cycles, as checked by surface-enhanced Raman spectra recorded over time.

11.
Langmuir ; 24(7): 3235-43, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18281998

RESUMO

Recently we reported noncovalent functionalization of nanotubes in an aqueous medium with ionic liquid-based surfactants, 1-dodecyl-3-methylimidazolium bromide (1) and 1-(12-mercaptododecyl)-3-methylimidazolium bromide (2), resulting in positively charged single-wall carbon nanotube (SWNT)-1,2 composites. Thiolation of SWNTs with 2 provides their self-assembly on gold as well as templating gold nanoparticles on SWNT sidewalls via a covalent -S-Au bond. In this investigation, we studied the electronic structure, intermolecular interactions, and packing within noncovalently thiolated SWNTs and also nanotube alignment in the bulk of SWNT-2 dried droplets and self-assembled submonolayers (SAMs) on gold by high-resolution X-ray photoemission spectroscopy (HRXPS), C K-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). HRXPS data confirmed the noncovalent nature of interactions within the nanocomposite of thiolated nanotubes. In PM-IRRAS spectra of SWNT SAMs on gold, the IR-active vibrational SWNT modes have been observed and identified. According to PM-IRRAS data, the hydrocarbon chains of 2 are oriented with less tilt angle to the bare gold normal in a SAM deposited from an SWNT-2 dispersion than those of 1 deposited from an SWNT-1 dispersion on the mercaptoethanesulfonic acid-primed gold. For both the dried SWNT-2 bulk and the SWNT-2 SAM on gold, the C K-edge NEXAFS spectra revealed the presence of CH-pi interactions between hydrocarbon chains of 2 and the pi electronic nanotube structure due to the highly resolved vibronic fine structure of carbon 1s --> R*/sigma*C-H series of states in the alkyl chain of 2. For the SWNT-2 bulk, the observed splitting and upshift of the SWNT pi* orbitals in the NEXAFS spectrum indicated the presence of pi-pi interactions. In the NEXAFS spectrum of the SWNT-2 SAM on gold, the upshifted values of the photon energy for R*/sigma*C-H transitions indicated close contact of 2 with nanotubes and with a gold surface. The angle-dependent NEXAFS for the SWNT-2 bulk showed that most of the molecules of 2 are aligned along the nanotubes, which are self-organized with orientation parallel to the substrate plane, whereas the NEXAFS for the SWNT-2 SAM revealed a more normal orientation of functionality 2 on gold compared with that in the SWNT-2 bulk.

12.
Langmuir ; 23(6): 3363-71, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17291020

RESUMO

We report the efficient aqueous dispersion of pristine HiPco single-walled carbon nanotubes (SWNTs) with ionic liquid (IL)-based surfactants 1-dodecyl-3-methylimidazolium bromide (1) and 1-(12-mercaptododecyl)-3-methylimidazolium bromide (2), the thiolation of nanotube sidewalls with 2, and the controlled self-assembly of positively charged SWNT-1,2 composites on gold. Optical absorption spectra and resonance Raman (RR) data of obtained aqueous SWNT-1,2 dispersions are consistent with debundled and noncovalently functionalized nanotubes whose electronic properties have not been disturbed. Additionally, the dispersion of pristine nanotube material with surfactants 1 and 2 leads to a high degree of purification from carbonaceous particles. The chiralities of the 14 smallest semiconducting HiPco SWNTs in resonance with Raman excitation at 1064 nm (1.165 eV) were determined in SWNT-2 aqueous dispersion using UV-vis-NIR and RR spectra. X-ray photoelectron spectroscopy (XPS) and surface-enhanced resonance Raman scattering (SERRS) spectroscopy of SWNT-2 submonolayers on gold verified the encapsulation of individualized SWNTs with IL surfactants, the cleavage of S-S disulfide bonds formed in aqueous SWNT-2 suspensions, and the direct chemisorption of the SWNT-2 composite on bare gold via the Au-S bond. Aqueous dispersions of SWNTs with IL-based surfactants add biofunctionality to carbon nanotubes by imparting the positive surface charge necessary for interactions with cell membranes. Our technique, which purifies pristine nanotube material and produces water-soluble, positively charged nanotubes with pendent surface-active thiol groups, may also be translated to other carbon nanotubes and carbon nanostructures. Self-assembled, positively charged submonolayers of SWNTs can be further used for applications in cell biology and sensor technology.


Assuntos
Ouro/química , Nanotubos de Carbono/química , Compostos de Sulfidrila/química , Água/química , Físico-Química/métodos , Detergentes/farmacologia , Microscopia de Força Atômica , Octoxinol/farmacologia , Poliestirenos/química , Polivinil/química , Solubilidade , Solventes/química , Espectrometria por Raios X , Propriedades de Superfície , Tolueno/química
13.
Langmuir ; 22(14): 6078-86, 2006 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-16800662

RESUMO

We have studied the structure and morphology of self-assembled polyelectrolyte multilayers prepared using poly(styrenesulfonate) (PSS) and four different cationic poly(alkoxythiophene) derivatives bearing methylimidazolium-terminated ionic side chain at the 3-position of the thiophene ring: poly(1-methyl-3-[3-[3-thienyloxy]-propyl]-1H-imidazolium) (P3TOPIM), poly(1-methyl-3-[6-[3-thienyloxy]-hexyl]-1H-imidazolium) (P3TOHIM), poly(1-methyl-3-[2-[(4-methyl-3-thienyl)oxy]-ethyl]-1H-imidazolium ) (P4Me-3TOEIM), and poly(1-methyl-3-[6-[(4-methyl-3-thienyl)oxy]-hexyl]-1H-imidazolium ) (P4Me-3TOHIM). All the multilayers exhibited regular growth. The thickness of the multilayers was measured with ellipsometry, their layer-by-layer growth was followed by polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and ellipsometry, and the morphology of the films was studied by atomic force microscopy (AFM). The length of the methylimidazolium-terminated side chain (C(n), n = 2, 3, 6) and the substituent (H or Me) at the 4-position of the thiophene ring were varied. All multilayers were inhomogeneous in the sub-micrometer scale and contained aggregates of two kinds. The large ones with a low and constant surface number density were attributed to PSS, whereas the small aggregates were polythiophene-based. The surface density of these organic semiconducting nanoparticles greatly depended on the structure of polythiophene, being favored by polymer regioregularity and the length of the side chain. The side chains remained disordered in all the multilayers, but with polythiophenes having hexyl chains both the imidazolium and thiophene rings tended to orient themselves more perpendicular to the surface than in films containing shorter chains (C2 or C3). The relative water content of the multilayers (at 7.1% relative humidity) did not depend on the film thickness and was the lowest for P4Me-3TOHIM. As the number of bilayers increased the methylimidazolium-sulfonate ion pairs gradually weakened and became more individually hydrated.

14.
Langmuir ; 22(1): 74-83, 2006 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-16378403

RESUMO

We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness.

15.
J Phys Chem B ; 109(18): 8634-42, 2005 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16852022

RESUMO

HiPco single-wall carbon nanotubes (SWNTs) have been noncovalently modified with ionic pyrene and naphthalene derivatives to prepare water-soluble SWNT polyelectrolytes (SWNT-PEs), which are analogous to polyanions and polycations. The modified nanotubes have been characterized with UV-vis-NIR, fluorescence, Raman and X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The nanotube-adsorbate interactions consist of pi-pi stacking interactions between the aromatic core of the adsorbate and the nanotube surface and specific contributions because of the substituents. The interaction between nanotubes and adsorbates also involves charge transfer from adsorbates to SWNTs, and with naphthalene sulfonates the role of a free amino group was important. The ionic surface charge density of the modified SWNTs is constant and probably controlled by electrostatic repulsion between like charges. The linear ionic charge density of the modified SWNTs is similar to that of common highly charged polyelectrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...